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It is remarkable that today’s computers, after the tremendous development during the last 50 
years, are still essentially described by the mathematical model formulated by Alan Turing 
in the 1930’s. Turing’s model describes computers which operate according to the laws of 
classical physics. What would happen if a computer was operating according to the quantum 
laws? Physicists and computer scientists have been interested in this question since the early 
1980’s, but research in quantum computation really started to flourish after 1994 when Peter 
Shor discovered a quantum algorithm to find prime factors of large integers efficiently, a 
problem which is intrinsically hard for any classical computer (see [1] for an introduction 
into quantum computation). The lack of an algorithm for efficient factoring on a classical 
machine is actually the basis of the widely used RSA encryption scheme. Phase coherence 
needs to be maintained for a sufficiently long time in the memory of a quantum computer. 
This may sound like a harmless requirement, but in fact it is the main reason why the 
physical implementation of quantum computation is so difficult. Usually, a quantum 
memory is thought of as a set of two-level systems, named quantum bits, or qubits for short. 
In analogy to the classical bit, two orthogonal computational basis states |0� and |1� are 
defined. The textbook example of a quantum two-level system is the spin 1/2 of, say, an 
electron, where one can identify the “spin up” state with |0� and the “spin down” state with 
|1�. While several other two-level systems have been proposed for quantum computing, we 
will devote the majority of our discussion to the potential use of electron spins in 
nanostructures (such as quantum dots) as qubits. 

Shor’s factoring algorithm 
We return to Shor’s algorithm, since it allows us to explain many important concepts. At the 
heart of it lies the quantum Fourier transform (QFT). Given n qubits with an orthonormal 
basis |0�,…,|2n–1�, the QFT is a unitary 2n X 2n matrix UQFT such that 

   

  

The QFT can be decomposed into a series of elementary operations, as shown in Fig. 1. The 
elementary operations, or “gates”, used here can be described as follows. The Hadamard 
gate H acts on a single qubit (represented by a horizontal line in Fig. 1). It transforms |0� 

       
(1)
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gate H acts on a single qubit (represented by a horizontal line in Fig. 1). It transforms |0� 
into (|0�+ |1�)/ 2 and |1� into (|0�- |1�)/ 2. The gate Rj denotes a rotation of the qubit by an 

angle of 2π/2j about the z axis. The vertical line which connects the box with Rj to another 
qubit means that this is a controlled rotation, i.e. the target qubit (below the box) is rotated if 
the control qubit (marked with the dot) is in state |1� and left unchanged otherwise. This 
description defines the controlled-Rj gate uniquely for all initial states of the control and 

target qubits since it determines its operation on a basis of products of |0� and |1�. 

   
  The controlled-Rj is an example for a two-qubit quantum gate. Quantum gates acting on 
more than one qubit are necessary in order to perform non-trivial quantum logic. 
Fortunately, it is possible to make use of only one two-qubit gate (e.g., the controlled-NOT) 
in combination with single-qubit gates for doing any quantum computation. Controlled-
NOT (also called XOR) is similar to controlled-Rj, but with the qubit rotation replaced by an 

inversion |0�↔1�. 

  The number of elementary quantum gates in the QFT circuit shown in Fig. 1 grows as the 
square of the number n = log2 N of qubits which are required to store the input N, whereas 

the classical fast Fourier transform (FFT) takes roughly n2n steps. It was Shor’s idea to 
apply period finding with the QFT to factor a number N = 0,…,2n–1: the period of the 
function f(x) = ax mod N can be used to find a prime number not equal to 1 or N which 
divides N. Here, a is a random number between 1 and N – 1 which has no common divisor 
with N (if it has, the problem is solved). Everything taken together, the number of 
elementary operations needed for finding a prime factor of N with the Shor algorithm 
essentially scales with n2, while the most efficient classical algorithm known presently 
requires exponentially more, on the order of exp(n1/3log2/3n). In order to illustrate the 
difference between power law (quantum) and exponential (classical) scaling, let us assume 
for the moment that we had both a classical computer and a quantum computer running 
Shor’s algorithm, and that both of them required one hour for factoring a number with 100 
decimals. To find a prime factor of a number with 1000 decimals would then take about a 
week on the quantum computer while using the classical computer, it would require about 
1012 years, longer than the estimated age of the universe! 

 
   
Fig 1 Circuit for the quantum Fourier transform (QFT). Each horizontal line represents a 
qubit; the order in which the quantum gates H and Rj are applied is determined by the arrow 
of time. The QFT is used in the Shor algorithm for efficiently finding prime factors. 
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Beyond Factoring 
Besides finding prime factors, the QFT can be used to solve other problems efficiently for 
which there is no efficient classical method. Consider for example the problem of discrete 
logarithms (which, as the factoring problem, has applications in cryptography): given 
integers a and b = as, find the value of the integer s. There is a whole class of problems of 
this kind which relate in some way to the problem of finding the period of a discrete 
function. 

  Another class is represented by Grover’s algorithm which finds an element in an unsorted 
database containing N entries. Solving this problem is like knowing a phone number and 
looking up the corresponding name in a phone book having N entries. Grover’s algorithm 
requires ∝ N elementary gate operations, while the fastest classical method requires ∝ N 
steps. 

  One of the early ideas is to use a controlled quantum system (quantum computer) to 
simulate another quantum system. When quantum systems are simulated on classical 
computers the computation time generically scales exponentially with the size of the system. 
Given a local Hamiltonian defined on a discrete (or discretized) system and some initial 
state, there is a quantum algorithm that computes the final state up to an accuracy ε with a 
number of elementary quantum gates which scales as a power of 1/ε. 

State of the Art 
Recently, Shor’s algorithm was implemented using nuclear magnetic resonance (NMR) with 
an ensemble of molecules in solution containing n = 7 nuclei with spin-1/2 addressed 
individually with rf fields [2]. This machine was able to factor the number 15. Nobody was 
particularly surprised that the answer was 15 = 3·5, but the experiment is still remarkable 
and represents the current state of the art of quantum computation. The regime where 
quantum computers could “boldly go where no classical computer has gone before” (and, 
e.g., break RSA encryption keys) starts at around n = 1000 qubits and millions of elementary 
quantum gates. It is fair to say that nobody knows whether there will ever be a quantum 
computer which will accomplish this. On the other hand, it is quite certain that room-
temperature liquid NMR will never reach this stage. The most important reason for this is 
that only ensemble averages are experimentally accessible and at the temperatures available 
these average signals decrease exponentially as the number of qubits increases. It also is not 
obvious how to make molecules or similar structures with, say, a thousand spins which can 
be individually addressed. Moreover, there have been theoretical arguments whether NMR 
quantum computing is really “quantum” (see [3] and references therein). 

  There are other systems, in which elementary quantum operations have already been 
performed experimentally [3], the most prominent examples being ion traps and high-Q 
optical cavities. Although, in contrast to NMR, these two implementations allow the 
manipulation and read-out of individual qubits, it appears rather difficult to scale them up to 
a large number of qubits. 
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Electron Spins as Qubits 
Motivated by the rapid upscaling of microelectronic semiconductor devices, several solid-
state implementations of quantum computing have been proposed. The analogy with the 
development of classical circuits even led some researchers to call the ion trap a “vacuum 
tube quantum computer” (the fate of the vacuum tube was to be superseded by a solid state 
device-the transistor). Here, we concentrate on the idea put forward in early 1997 by Loss 
and DiVincenzo to use the spin 1/2 of electrons in confined nanostructures, e.g. quantum 
dots, as qubits (see chapter 8 in [4] for a review). Many solid-state implementations for 
quantum computing have been proposed subsequently [3], including superconducting 
qubits, nuclear spins of donor atoms in silicon, and charge qubits in quantum dots. 

  The electron’s spin is a “natural” representation of a qubit since it comprises exactly two 
levels. Unlike for charge states in an atom or quantum dot, there are no additional degrees of 
freedom into which the system could “leak”. Another great advantage of spins as compared 
to charge qubits is that in typical semiconductor materials like gallium arsenide (GaAs) or 
silicon (Si), the time over which the spin of a conduction-band electron remains phase 
coherent can be several orders of magnitude longer than the corresponding charge 
decoherence times. Of course these numbers have to be compared with the time it takes to 
perform an elementary gate operation. Even considering this, single spins seem to be very 
well suited as qubits. The transverse decoherence time T2, which is most relevant in the 
context of quantum computing, is defined as the characteristic time over which a single spin 
which is initially prepared as a coherent superposition of “spin up” and “spin down” 
coherently precesses about an external magnetic field. The transverse dephasing time T2* T2 
of an ensemble of spins in n-doped GaAs can exceed 100 ns, as demonstrated by optical 
measurements [5], while switching times are estimated to be on the order of 10–100 ps. The 
longitudinal (energy) relaxation time T1 determines how long it takes for a non-equilibrium 
spin configuration to relax to equilibrium. T  can be much longer than T  (and particularly 

 
   
Fig 2 Scanning electron micrograph of a semiconductor structure with two coupled 
quantum dots (yellow disks) formed by applying a negative bias to the metallic contacts 
(grey) which define the quantum dots. The electron number in each dot can be controlled 
down to one, and it can be measured by quantum point contacts (yellow arrows). [courtesy 
of L. Kouwenhoven, TU Delft]. 
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spin configuration to relax to equilibrium. T1 can be much longer than T2 (and particularly 
long in confined structures), but while suppression of spin relaxation is necessary for 
quantum computation, it is not sufficient. 

  In the battle against decoherence, physics is also helped by the results of fundamental 
research in quantum information theory. Error correcting codes have been developed which 
in principle allow arbitrary long quantum computations to be performed even in the 
presence of decoherence and imperfect quantum gates, as long as the error rate does not 
exceed a certain threshold. This threshold depends on the error model and the code; typical 
numbers are around 1 memory or gate error in 104 cycles. 

Quantum Dots 
Semiconductor quantum dots are small islands of electrons in an otherwise depleted region. 
The largest degree of control can be obtained with quantum dots that are electrically 
confined in a two-dimensional electron system (2DES) formed e.g. at the interface between 
a GaAs and an AlGaAs layer or in a quantum well formed by an AlGaAs-GaAs-AlGaAs 
“sandwich”. Using metallic gates at the top of the heterostructure, electrons can be laterally 
confined to a region with a size on the order of the Fermi wavelength (around 40 nm in a 
typical GaAs/AlGaAs 2DES), leading to a discrete energy spectrum (quite like in atoms). A 
quantum dot can be connected to external leads via tunneling contacts which are likewise 
formed in the 2DES by electrical gating. In these systems, the Coulomb blockade effect, i.e. 
the quantization of the electronic charge on the dot which leads to pronounced peaks in the 
conductance as a function of an applied gate voltage, can be observed. 

  Adjacent quantum dots can be coupled, as shown in Fig. 2. In the Coulomb blockade 
regime, adding and removing single electrons is easy, however, removing all but one 
electron is very hard and has been achieved only recently in lateral dots like those in Fig. 2. 

  In order to use electron spins for quantum computation, one would like to label them in 
order to be able to address a certain qubit at any time during the computation and for the 
read-out of the final result. If the electrons carrying the spin qubits were free like in a metal 
or 2DES, then this would be impossible due to the indistinguishability of identical particles 
in quantum mechanics. However, if the electrons carrying the quantum information were 
localized in an array of quantum dots (Fig. 3) then they could be distinguished by their 
position. 

Exchange Coupling 
As mentioned earlier, for quantum computing qubits need to be coupled using a two-qubit 
gate. In the case of localized spins the required coupling can be obtained via tunneling 
between adjacent dots. This can be understood in terms of a simple Hubbard model with a 
tunneling amplitude t between adjacent sites and an on- site Coulomb repulsion energy U. 
With one electron per dot, one finds in the limit t << U that the low-energy physics of the 
system is described by the spin Hamiltonian 

  

where  = 4t2/U is the exchange energy and Si denotes the spin 1/2 operator at site i. We 
have also included the Zeeman energy due to an external magnetic field B  at site i, where 

       (2)
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have also included the Zeeman energy due to an external magnetic field Bi at site i, where 
µB is the Bohr magneton and gi is the Landé g-factor. Even if the external field is constant 
and homogeneous, both the exchange for each pair of spins and the Zeeman term for each 
individual spin (see below) can be controlled by electrical gating. Applying a gate voltage at 
the surface will increase the potential barrier for electrons between adjacent dots, and J will 
be reduced exponentially. This effectively provides a mechanism for switching on and off 
the coupling between two qubits while all other interactions are off (this is required for a 
circuit as e.g. Fig. 1). In NMR however, all interactions are on all the time, and one has to 
apply refocusing techniques in order to “effectively” switch off the unwanted interactions. 

    
  One can use the analogy between quantum dots and atoms and treat the coupled system as 
an artificial hydrogen molecule. Since the exchange energy is just the energy difference 
between the lowest spin singlet and triplet states of a two-electron system, we can find a 
good estimate for J by applying the Heitler-London method from molecular physics. For 
more details and for a number of improvements to the Heitler-London method we refer the 
interested reader to chapter 8 in [4]. Molecular states in quantum dots have been observed in 
the Coulomb blockade regime, but further evidence is required to distinguish between 
single-electron states (“  molecules”) and the two-electron states discussed here (“H2 
molecules”). 

Quantum dot quantum logic 
If the exchange coupling between two neighboring spins is switched on for a finite amount 
of time and the time- integrated exchange energy (divided by ) equals exactly π then the 

 
   
Fig 3 Sketch of a linear array of quantum dots (dashed circles), each containing a single 
(excess) spin 1/2 (blue arrow) representing a qubit for quantum computing. Localized spins 
can be labeled and addressed individually. The metal gate electrodes (green) are used to 
define the quantum dots and the couplings between them. For single-qubit operations, a 
local difference in Zeeman splittings could be achieved electrically, e.g. by applying a gate 
potential between the top and the bottom of the structure; any electron can then be shifted 
individually towards a magnetized or high-g layer (red). Likewise, such local Zeeman 
splittings could be generated by a static inhomogeneous magnetic field, e.g. produced by a 
current I (red circles). Single-qubit rotations could be performed using electron spin 
resonance (ESR) with a homogeneous oscillatory field  with a frequency matching the 
local Zeeman splitting of the desired qubit. The exchange coupling between adjacent spins 
could also be controlled electrically by gate electrodes. We have sketched a situation where 
the qubits 3 and 4 are coupled. 
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of time and the time- integrated exchange energy (divided by ) equals exactly π then the 
states of the two spins are swapped. For quantum computation, the “square-root of swap” (
SWAP), obtained by applying a time-integrated exchange of only π/2, is much more 

interesting: it can be used to produce a maximally entangled state of two spins from a 
product state. An example is the spin singlet state | �–| �. Entanglement is one of the 
essential features of quantum mechanics and thus plays a key role in quantum computing 
(the connection between entanglement and the efficiency of quantum algorithms is still not 
fully understood). SWAP can be combined with single-qubit gates into the controlled-NOT 
gate. As a consequence, the exchange interaction between spins plus the ability to rotate 
single spins is sufficient for quantum computation. 

  During the short time of the switching process (not in between), the spin of the electrons in 
the coupled quantum dots is coupled to the charge via the Pauli exclusion principle, and we 
have to avoid charge excitations. The relevant energy scales are the level spacing δE on a 
single quantum dot and the on-site Coulomb repulsion energy U. Typically, both of these 
energies are several tens of Kelvin, while for smaller quantum dots, they can even approach 
room temperature. The operating temperature of the quantum computer should not exceed 
these energies. Furthermore, the switching of external parameters leading to a time-
dependent exchange J(t) should not be too fast. One can find optimal switching pulse shapes 
(e.g. 1/cosh) and lower bounds for the switching times (for typical lateral dots around 100 
ps) [4]. 

    
Rotating spins 
Rotating single spins may seem easier than coupling two spins. However, one finds that 
applying a field of, say, 1 Tesla to a particular spin without rotating neighbors at a distance 
of only about 50 nm would require huge field gradients. Although some technologies allow 
to apply strongly localized magnetic fields (hard disk read/write heads, magnetic force 
microscope tips), it appears very difficult to achieve large gradients. It seems more realistic 
to apply electric gate voltages locally, as shown in Fig. 3, changing the vertical position of 
the localized electrons, which, in combination with a spatially varying Zeeman effect (using 
either magnetic or g-factor modulated materials), can change the effective magnetic field in 
which a spin is precessing. This is in principle sufficient for performing arbitrary single-spin 
rotations-completing the required set of operations for our quantum computer. Modulation 
of the g-factor by electrical gating was in fact recently demonstrated experimentally at UC 
Santa Barbara (see [4], chapter 5). 

 
   
Fig 4 Setup for detecting entangled electrons which are injected from the entangler into 
Fermi leads 1 and 2. Two-particle interference at the electronic beam splitter leads to distinct 
statistical effects for entangled singlet or triplet pairs in the noise correlations between the 
outgoing leads. In the case of the singlet, the noise enhancement allows to uniquely detect 
the entangled state. 
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  Alternatively, individual spins could be rotated using a homogeneous oscillatory magnetic 
(ESR) field in combination with a static gradient which allows to select a certain spin by its 
distinct resonance frequency. Yet another interesting possibility for fast spin manipulation 
was investigated in Awschalom’s group (UCSB). Spin-polarized electrons were rotated 
using a femtosecond optical pulse which acts like an effective strong magnetic field via the 
optical Stark effect ([4], chapter 5). 

  A “computer science” trick to perform universal quantum computation using solely the 
exchange interaction JSi·Sj is based on encoding each logical qubit into three spins instead 
of one. In addition to this overhead the “exchange only” implementation would require on 
the order of ten times more operations. 

Input and Output 
A quantum computer would be useless if it were impossible to prepare it initially with some 
input data and finally to read out the result. Using single-qubit rotations, initializing the 
system can be reduced to preparation in some fixed known state, such as |00…0�. The latter 
can be produced by applying a homogeneous magnetic field and letting the system relax. 

  Reading out single spins directly is difficult. As for single-spin rotations, it might be easier 
to transform the “magnetic” problem into an “electric” one (spin-to-charge conversion). For 
readout, spin-dependent tunneling to an adjacent empty quantum dot would be monitored 
using an electrometer (sensitivity orders of magnitude smaller than a single electron charge). 
The presence or absence of an electron in the adjacent dot after a finite amount of time 
would then allow one to tell whether there was a spin up or spin down electron in the read 
dot. 

Quantum Communication 
It is hard to predict at the moment to what degree and up to which scale quantum 
computation can ever be realized. Another related field of research, quantum 
communication, is about to yield new implementable technologies. The most advanced 
application appears to be quantum key distribution (QKD). The cryptographic keys used 
nowadays are not unconditionally secure, i.e. they rely on some assumptions which are 
believed to be true with high confidence, e.g. the widely used RSA scheme for encryption is 
safe as long as factoring large integers cannot be performed efficiently. The BB84 protocol 
for QKD, invented by Bennett and Brassard in 1984, is based on the transmission of single 
qubits (e.g. the polarization of photons) from one party to the other, while a protocol put 
forward by Ekert in 1991 is based on each of the two parties possessing one qubit of an 
entangled (or EPR) pair. Quantum teleportation and superdense coding are also based on the 
use of such entangled pairs. Roughly speaking, two qubits are in an entangled state if their 
total quantum state cannot be written as the product of quantum states of each qubit 
separately. So, while |0�1 |1�2 and |0�1 |0�2–|0�1 |1�2–|1�1 |0�2+|1�1 |1�2 are not entangled, the 

singlet state |0�1 |1�2–|1�1 |0�2 is entangled. 

  All of the concepts mentioned above have been successfully tested using entangled photons 
from parametric downconversion [1]. There have been several theoretical suggestions to 
produce, transport, and detect spin entangled electrons in mesoscopic wires [4, 6] and there 
is increasing experimental effort towards realizing this challenging idea. Actually, entangled 
states are rather the rule than the exception in condensed matter physics. Particularly 
interesting are systems which possess entangled ground states (a simple example being two 
tunnel-coupled quantum dots), since in such a state the entanglement is robust against 
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tunnel-coupled quantum dots), since in such a state the entanglement is robust against 
external perturbations once the system is cooled to low enough temperatures. 

  The big problem is to harness such entangled states. Using adiabatic pumping, such states 
could be injected into electrical leads which are attached to quantum dots. Another possible 
implementation of an “entangler” is a tunnel contact between a conventional BCS 
superconductor and a normal metal. The ground state of the superconductor consists of a 
condensate of Cooper pairs which are in the spin singlet. By biasing the superconductor-
normal junction, Cooper pairs can be broken and the two resulting electrons can tunnel into 
the normal metal. In order to be useful for quantum communication, the two electrons have 
to be extracted in two separate leads while remaining entangled. It has been shown (chapter 
8 in [4]) that the fraction of the electrons emerging in separate leads can be drastically 
increased by connecting the superconductor to two normal quantum dots which are 
connected to the normal leads such that the on-site Coulomb repulsion in each quantum dot 
prevents two electrons from simultaneously moving into the same lead. 

  How can an spin entangler for electrons be tested for its functionality? A solution is to use 
statistical properties. Due to the Fermi statistics, an electronic spin singlet state has a 
symmetric orbital wavefunction, and it can be expected that it exhibits “particle bunching” 
familiar for Bosons in suitable two-particle interference (Hanbury Brown-Twiss) 
experiments. Consider injecting the electrons from the entangler into an electronic beam 
splitter (Fig. 4) and then measuring the current autocorrelations in one of the outgoing arms 
(3 or 4). It can be proven [4, 6] that when the electrons injected are in the entangled spin 
singlet state, a particle bunching effect will be seen, i.e. the probability for both electrons to 
emerge in the same (different) outgoing lead will be enhanced (suppressed). This leads to a 
measurable enhancement of the noise-to-current ratio by a factor of two. Another important 
issue is whether the spin entanglement becomes degraded owing to electron-electron 
interactions during transport in the mesoscopic leads. The probability of recovering an 
entangled pair transmitted through an interacting electron system scales with  where 0 < 
zF  1 is the quasiparticle weight. This quantity can be evaluated for a two-dimensional 
electron system using Green’s functions. For typical GaAs samples, zF  0.7, so about 25% 
of the pairs can be recovered. For weak spin-flip scattering (as seen experimentally e.g. in 
GaAs), the entanglement of those pairs which are recollected after transmission is still 
maximal. 

  Because photons typically interact with their surroundings much more weakly than 
electrons, they are ideal for long-distance transmission of quantum information, but it is 
rather hard to couple them to spin-based quantum computer hardware. Besides being of 
fundamental interest, electron spins, transported over micrometer distances in a solid, serve 
as a “bus” for the spin-based quantum computer. On the theoretical side, the Fermi statistics 
for electrons has led to a further generalization of the notion of entanglement. 

Outlook 
New concepts of quantum information processing are being investigated on the “small 
scale” with NMR, quantum optics, and trapped ions. Theoretical work on solid-state 
quantum computing, in particular the spin- based scheme outlined here, has motivated 
considerable experimental efforts towards solid-state qubits. Regardless of whether a large-
scale solid-state quantum computer will emerge from these efforts, it is already now exciting 
to follow these developments since new and interesting results in both fundamental and 
applied physics can be expected. 
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